Differential representation of a bivariate inverse Gaussian process
نویسندگان
چکیده
منابع مشابه
Sparse inverse kernel Gaussian Process regression
Regression problems on massive data sets are ubiquitous in many application domains including the Internet, earth and space sciences, and finances. Gaussian Process regression is a popular technique for modeling the input-output relations of a set of variables under the assumption that the weight vector has a Gaussian prior. However, it is challenging to apply Gaussian Process regression to lar...
متن کاملInverse Reinforcement Learning via Deep Gaussian Process
We propose a new approach to inverse reinforcement learning (IRL) based on the deep Gaussian process (deep GP) model, which is capable of learning complicated reward structures with few demonstrations. Our model stacks multiple latent GP layers to learn abstract representations of the state feature space, which is linked to the demonstrations through the Maximum Entropy learning framework. Inco...
متن کاملSparse Representation for Gaussian Process Models
We develop an approach for a sparse representation for Gaussian Process (GP) models in order to overcome the limitations of GPs caused by large data sets. The method is based on a combination of a Bayesian online algorithm together with a sequential construction of a relevant subsample of the data which fully specifies the prediction of the model. Experimental results on toy examples and large ...
متن کاملGaussian Process Approximations of Stochastic Differential Equations
Stochastic differential equations arise naturally in a range of contexts, from financial to environmental modeling. Current solution methods are limited in their representation of the posterior process in the presence of data. In this work, we present a novel Gaussian process approximation to the posterior measure over paths for a general class of stochastic differential equations in the presen...
متن کاملInverse Gaussian process models for degradation analysis: A Bayesian perspective
This paper conducts a Bayesian analysis of inverse Gaussian process models for degradation modeling and inference. Novel features of the Bayesian analysis are the natural manners for incorporating subjective information, pooling of random effects information among product population, and a straightforward way of coping with evolving data sets for on-line prediction. A general Bayesian framework...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Multivariate Analysis
سال: 1973
ISSN: 0047-259X
DOI: 10.1016/0047-259x(73)90027-4